

Searching for and understanding the quark-gluon plasma in heavy-ion collisions

Rongrong Ma (BNL) 07/28/2020

Summer Student Lecture

Standard Model of Elementary Particles

• Color-confinement: all visible matter are color neutral

Quark-Gluon Plasma (QGP)

• Quark-gluon plasma: a state of matter, consisting of asymptotically free moving quarks and gluons which are ordinarily confined within nucleons by color confinement.

https://today.uic.edu/collider-reveals-sharp-change-from-quark-soup-to-atoms

Quark-Gluon Plasma (QGP)

This state is believed to exist at extremely high temperature and/or density

Phase transition

- T_c $\sim 165 \text{ MeV}$

Why is QGP interesting?

• Existed 10⁻⁶s after Big Bang

Why is QGP interesting?

A rich QCD lab

– What does the QCD phase diagram look like? What QCD dynamics drives it?

– ...

How to study QGP?

• Re-create QGP in a lab

Create the QGP in a lab

Heavy-ion collisions

- T.D. Lee, 1974: We should investigate phenomena by distributing high energy or high nucleon density over a relatively large volume

RHIC: Au+Au

LHC: Pb+Pb

Study QGP in a lab

• How to measure final-state particles? → Detectors

General requirements for detectors

- Large acceptance
- High efficiency
 - measure as many particles as one can in acceptance
- High resolution
 - measure particles' properties as precise as one can
- Particle identification capability
 - identify particle species, e.g. pions, kaons, protons, etc

Heavy-ion experiments

STAR @ RHIC

- RHIC: PHENIX shut down in 2016
- LHC: CMS, ATLAS and LHCb also take heavy-ion data

STAR @ RHIC

- Heavy-ion collisions happen at the center of STAR
- Cylindrical shape; magnet sits at radius ~ 3 m

STAR Detector System

15 fully functioning detector systems

- Complexity
 - Many different subcomponents serving different purposes
 - Hundreds of thousands of readout channels

X103 increases in DAQ rate since 2000, most precise Silicon Detector (HFT)

Time Projection Chamber

• Gas detector taking 3D photos of the tracks of passing charged particles

Time Projection Chamber

• Gas detector taking 3D photos of the tracks of passing charged particles

- Particles ionize gas and produce electrons
- Trajectory → momentum & charge

Can TPC measure neutron's momentum?

Time Projection Chamber

• Gas detector taking 3D photos of the tracks of passing charged particles

- Energy loss in the TPC is determined by particle species
- Number of drifted electrons is proportional to the energy loss
- Limited at higher momenta

From electronic signal to physics

1) Data taking

- Usually in the first half of a year
- 24/7 4-person shift to take data and monitor the status of detectors
- Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week

From electronic signal to physics

1) Data taking

- Usually in the first half of a year
- 24/7 4-person shift to take data and monitor the status of detectors
- Rates: ~2 kHz for Au+Au @ 200 GeV, 500 TB/week

2) Calibration

Convert electronic signal to physical quantities, such as energy

3) Data production

- Vertex: position where the collision happens
- Charged particles: momentum, position, charge ...

4) Analysis

Correct for detector acceptance, efficiency and resolution

A real event taken by STAR

Characterize QGP

- Global properties
 - Bulk of produced particles, mainly of low energies
- Penetrating probes of high energies
 - Analogous to shooting laser through a volume of gas
 - External probes not possible due to QGP's short life time $(\sim 10^{-23} \text{ s})$
- Which group has more particles? Why?

Centrality

• Used to quantify how much the colliding ions overlap

- Head-on
- Smaller b
- Larger/hotter medium

- Glance through
- Larger b
- Smaller/no medium

Initial energy & temperature

• Recall: $\varepsilon_c \sim 1 \text{ GeV/fm}^3$; $T_c \sim 165 \text{ MeV}$

Measure particle density

 $\varepsilon_0 = 4.9 \pm 0.3 \text{ GeV/fm}^3$

- $T \sim 221$ MeV for central collisions
- $T_0 = 1.5-3 \times T$

PHENIX: PRL 104 (2010) 132301

Elliptic flow (v₂)

- Spatial asymmetry → yield asymmetry in azimuth
 - Different pressure gradients along x- and y-direction
 - Depends on overlapping geometry, etc

A nearly "perfect" fluid

B. Schenke, et. al, PRC 99 (2019) 044908

- Described by theory calculation for nearly "perfect" fluid
- Initial space asymmetry is well preserved.

Jet quenching

- High energy quarks and gluons, produced early, traverse the QGP
- QGP is believed to be "opaque" to them; expect **energy loss** due to strong interactions

Nuclear modification factor (R_{AA})

$$R_{_{AA}} = \frac{1}{\left\langle N_{_{coll}} \right\rangle} \frac{N_{_{AA}}}{N_{_{pp}}}$$

no medium effects \rightarrow R_{AA} = 1

Jet quenching?

Charged particle R_{AA}

• Up to a factor of 4-5 suppression at large momenta \rightarrow jet quenching

Will R_{AA} become larger or smaller in peripheral events?

Future of heavy-ion experiments

• Explore QCD phase diagram and QGP properties with detector upgrades, significantly more recorded events and new facilities

Courtesy of A. Dainese, QM2019

Summary

- What is the Quark-Gluon Plasma (QGP)?
 - ✓ A state of matter with **deconfined** quarks and gluons
- Why is the QGP interesting?
 - ✓ Existed at early Universe; QCD phase diagram
- How to create the QGP in a lab?
 - ✓ Heavy-ion collisions
- How to study the QGP in a lab?
 - How do we access the QGP? → Detectors
 - What have we learnt about the QGP? → "Perfect" fluid; quench jets ...
- What is the future of heavy-ion experiments?
 - ✓ Exciting 10 years of physics program ahead and more ...
 - ✓ Electron-Ion Collider to be built at BNL

Backup

Future of HI experiments: low √s

• Explore QCD phase diagram and QGP properties with detector upgrades, significantly more recorded events and new facilities

Facility	SIS18	HIAF	Nuclotron	J-PARC-HI	SIS I 00	NICA	RHIC	SPS	SPS
Experiment	HADES / miniCBM	CEE	BM@N	DHS, D2S	CBM / HADES	MPD	STAR	NA61	NA60+
Start	2012, 2018	2023	2019 (Au)	>2025(?)	2025	2021	2010,2019	2009, 2022	>2025(?)
√s _{NN} . GeV	2.4 – 2.6	1.8 — 2.7	2 – 3.5	2 – 6.2	2.7 – 5	2.7 - 11	3 – 19.6	4.9 – 17.3	4.9 – 17.3
μ _B , MeV	880 – 670	880 – 750	850 – 670	850 – 490	780 – 400	750 – 330	720 – 210	560 – 230	560 – 230

Courtesy of T. Galatyuk, QM2018

Future of HI experiments: high √s

• Explore QCD phase diagram and QGP properties with detector upgrades, significantly more recorded events and new facilities

